We spotted this amazing article by N6CC and it is PACKED full of  creative antenna ideas you can glean from.  This article was originally posted over at N6CC.com (Navy 6 Combat Comms) including photo credit (Tim Sammons). Thank you, N6CC for sharing these Antenna setups!

“If it’s stupid – but works – it isn’t stupid”  
Murphy’s Laws of Combat

A good field expedient antenna must first start with a good antenna design or at least you should be willing to accept potentially marginal performance.  The expedient part is based upon availability of materials but you have to start with a good design.  The standard reference for military and civilian use is the ARRL Antenna Book.  Full of tried and proven antennas for a range of frequencies of interest from LF, HF, VHF, UHF and beyond.  The designs are based upon solid engineering but backed up by solid measurements and practical, proven performance in a real environment.  Start there if you are new to this stuff!  Read it a few hundred times.  Learn, Practice, Evaluate, Experiment, Communicate!

Field Expedient Antenna Insulator

Field expedient antenna wire end insulator – You get the idea. Run what you brung.
Improvise, adapt, overcome.

Expedient UHF Ground Plane Antenna

Above: I needed a quickie quarter-wave ground plane antenna cut for the UHF bands. An SO-239 chassis connector with coat hanger radiating element and ground radials soldered as shown. Or use brazing rod. The RG-8/U 50 ohm coax connects to it via an PL-259 connector, tape makes it happen. I can receive UHF SATCOM signals with this, especially the ones lower on my horizon. Gain is good if you can get it, simple can work. Nothing original here. Vertical element length (in inches) = 2808/F(mc). Make the radials about 5% longer, sloping downward about 45 degrees makes it pretty close to 50 ohms.

Field Expedient Antenna "Launcher"

Speaking of water bottles, see that innocuous water bottle up on the roof? Look closely at the center ridge tile – see the wire? I used the plastic bottle (with a little water in it) to sling and insulate one end of a dipole antenna up on the roof of this building. On 7050 KC I used it to work station K6KPH over 200 miles north of here with a GRC-109 running 10 watts on this end. No one the wiser.

DIPOLE CENTER INSULATORAlthough maybe not technically a “field expedient”, below is a photo of a simple DIY assembly to serve as a GRA-4 dipole center insulator/connector. AKA the “Cobrahead” in Army parlance. This one can be made with a little pre-planning.  Made from simple hardware store parts, it can be used for an ends-supported dipole, a center-supported dipole a Vee Beam or an inverted Vee antenna.  It can also be self supporting just by sliding the “tail” into an standard AB-85/GRA-4 antenna mast section – it’s a perfect fit.  In this configuration it can be set up as a “Near Vertical Incidence Skywave” (NVIS) antenna system with crossed dipoles for both 80 and 40 meters if kept “low” and the proper freq is selected for the range requirement and time of day.  Or any other freqs you may want to design it for. (If you are after long range via the ionosphere, place it about one half wavelength high.) I have had good results when configured for “regional ranges” with a 20 foot AB-85 mast supporting this insulator with the 4 legs of 80/40 meter dipoles providing support in an inverted Vee configuration. The 80 and 40 “Hot” legs are connected to the Red post, the other 2 legs to the Black post – this puts the dipoles electrically in parallel.

As you can see above, the insulator is made from 3/4 inch PVC pipe parts: a 4-way “Cross”, 3 end-caps, 4 short pipe sections, a 3-way Tee and a 3/4 to 1/2 inch adapter to provide support to the SO-239 connector. It includes a longer pipe section at the “bottom” to fit inside the AB-85 mast end. All joints are glued with the exception of bottom pipe – it is slip-fit to ease internal assembly and it carries no tension load. The Cross has the 4 short pipe sections attached: They go to the 3 end-caps and the bottom one goes to the 3-way TEE. The longer pipe section goes out of the “bottom” of the TEE for free standing operation. Each end cap has a 1/4-20 stainless steel eye bolt and a pair of suitable washers under the assembly nuts to distribute the stress load to the end caps. The “top” eyebolt is also unconnected electrically – it is just a tie point for hanging. Each dipole leg eyebolt just provides a mechanical connection; they are not electrically connected to anything either.

Once secured to the eyebolts, the dipole legs actually connect to the red and black terminal posts as shown. For a half wave dipole on HF frequencies, the overall dipole wire length in feet, end-to-end L = 468/F where L is in feet and F is the design frequency in megahertz. Each dipole element leg from this center insulator assembly out to the end of the wire is of course half of that overall length.

The posts are wired to the SO-239 which is screwed to the 3-way TEE via the adapter (drill and tap holes for 4-40 machine screws into the PVC 3/4 to 1/2 inch adapter). The Red and Black posts are connected internally to the coax center and shield respectively. That coax is then wound around a large ferrite core to form a current choke to keep the radiation symetrical – no feedline radiation. A short RG-58 C/U jumper to a PL-259/Barrel completes the electrical connection the the radio system. This thing is easier to build than to describe. If anyone else came up with the same idea I apologize. After spending five minutes in a hardware store looking at PVC fittings, this thing practically designed itself…

Above: See the dipole center insulator cross above the apex of the parachute? The PVC fixture is slid into the AB-85 mast that also supports the T-10 parachute. Wire dipole elements just laying along the top of the 10 foot hedge. Worked great for NVIS and even cross-country contacts.  With a pair of dipole legs for 80 and 40 meters ( or any of your other favorite 2 bands) it will perform identically to an AS-2259 antenna at 1% of the cost.  If the frequencies are harmonically-related like 80/40 meters, no “tuner” is needed. The AS-2259 is a good design (I couldn’t afford one!) but is basically just 2 dipoles at 90 degrees to each other, fed in parallel via a transmission-line support mast.  A bamboo pole or PVC pipe with coax or WD-1/T commo wire feed will work just as well – the guy on the receiving end could not tell the difference.

You could also build it without the current choke or the SO-239 connector or the AB-85 adapter pipe. Just use either a 4-way cross or a Tee and let the coax hang down.

Here’s another dipole center insulator built with scrap plastic and connectors:  Connect the coax connector center pin to one screw terminal, the other goes to the chassis connector “ground”.  Cheap, simple, lightweight.

DIY Dipole Antenna Center Insulator

Above: Dipole center insulator with SO-239 Coax Connector

Expedient dipole/wire array center insulator

Above: A similar insulator made from scrap plexiglass and a couple of screw terminals. Ordinary machine screws and nuts would obviously work fine as well. This one is already connected to the coax transmission line with Zip ties, the radio end has pins for connecting to the radio antenna terminals. Scrap 50 (or 75) ohm coax. Just tie the wire elements into the holes in the plexiglass, connect to terminals, hoist up – GO!  Again, maybe not something you can whip up with a coconut and kelp but a little time with a saw, drill and scrap pile before you deploy will save you a lot of time later….

WD-1A/TT Wire Expedient Dipole

Above: On the go? Only have some WD-1A/TT infantry field commo wire? What could be simpler?  Just unzip the leg lengths you want, tie an overhand knot to keep the feed line portion from further unzipping, hang it up.

Each half of the resonant dipole length in feet L = 234/f where f is in Megahertz. The overall antenna length, end to end is L = 468/f, just like any HF wire dipole.  No center insulator available or needed for low power operation? The wire insulation itself does the job. Assuming the feed point looks like, say, 72 ohms and you are feeding it from a 20 watt transmitter, the voltage here between the legs = 38 volts RMS. No problem for this insulation. At 100 watts it is only 85 volts, again no problem. WD-1A/TT wire insulation is rated at 1000 volts RMS (MIL-DTL-49104C) so you are not going to arc it over when operating the antenna at its resonant frequency. You can also use lamp “zip cord”, speaker wire, demo wire etc.

Or rig it vertically for VHF ops with other vertically polarized VHF stations in your Net. In either case, run the feed line away from the antenna at 90 degrees for at least a quarter wave if you can (for a more “textbook” radiation pattern).

"Field" expedient random wire antenna

Above: Well maybe not a “Field” expedient antenna, more like an “Suburban” expedient antenna. See the wire connected to the rain gutter? Feed line wire attached with a sheet metal screw into the 80 foot long aluminum gutter. Works just fine on HF. Connect your gear to anything metallic and as long & high as possible – you will make contacts. For more info on this type of antenna see the “Stealthy / Covert” Antennas post.

PORTABLE VHF YAGI MOUNTING: Below is a photo of my portable 7 element Yagi for 2 meter field operations, mounted on a DIY mast bolted to the truck . Although not a “field expedient” antenna per-se, it can be mounted and aimed in the field in many ways.The antenna is an old standard Cush Craft and it is mounted on top of an AB-85 mast. In this photo I was using 18 feet of mast lashed to the back of my Bronco but the kit contains 3 nylon Guy Lines, stakes and hardware to make it self supporting on soil. (Not an option in this case). A short piece of Re-Bar driven into the soil keeps the bottom from kicking out when the AB-85 bottom section is slipped over it. It is fed by a length of RG-8X Coax and the SWR is close to 1:1 at 146 MC.

This is a very handy antenna and sets up in about 10 minutes, a little longer if free-standing and independently Guyed. In the below photo you can see the assembly. Everything is “standard” but I have put a shot of different colored spray paint at each element-boom intersection so is can be assembled quickly and accurately in the field. Note that the mast section at the Boom can accommodate another AB-85 mast section – this allows insertion of my Dipole insulator above the Yagi if I want the mast to also support HF antennas. (this extra section keeps the dipole wires away from the Yagi elements – might mess up the radiation pattern an bit otherwise.

See the detail in this photo below. I have marked “MAX SIGNAL” arrows to assist others in properly aiming it if I am not around. The elements and boom-mast U Bolts are secured with wing nuts – no tools required for assembly. The camera lens “barrel distortion” makes everything look bent – all parts are actually straight…

Below is the same antenna (pre-paint job) deployed on a mountain top. The long canvas bag on the ground carries the entire antenna and mast. The 3 green “lumps” are the coiled up guy lines – not needed here.  Looks like I didn’t get the elements very vertical – worked anyway!  That vertical whip on  the right is an AS-1729 VHF whip and coupler that I use for 6 meters.  Here connected to the mobile VRC-7/RT-70 or the PRC-25.  Good, rugged antenna system.

The PVC Pipe J-Pole Antenna The standard J-Pole antenna for 2 meters is made from 300 ohm TV twinlead and fed by 50 ohm coaxial cable. They are handy – providing good gain over a “Rubber Dummy” and not requiring a “ground plane” or radials. The design is simple and available on many websites and handbooks. I carry several, rolled up ready to hang from a tree or other support via a nylon cord launched with a small fishing weight. I can get these 50 feet up in a suitable tree when necessary. But there are times where you either don’t have a tree, don’t need the additional height or the extended range that provides. In that case, a free-standing antenna is called for.

I built one of my twin lead J-Poles inside a standard section of 1/2 inch PVC pipe to provide rigidity. Since the antenna is a bit longer than the standard 48 inch pipe, I added a 12″ extender at the top end with a female-female PVC coupler. The antenna is held inside with a short piece of nylon fish line and topped off with an end cap sporting a stainless steel eyebolt. The eyebolt is opened up for hanging on a suitable support or tied to a line for hauling higher up. The bottom end consists of a TEE which allows the coax to depart the antenna at right angles thus permitting another piece of PVC pipe to be screwed into the TEE to increase the height and get the antenna “in the clear” if necessary. See details below.

One way I use it is to attach it to a piece of plywood to make it self-supporting, either on a table or on the ground. This set up is designed for a table where my ToolBox radio set provides a counterweight (not actually necessary – you could put the flange in the center of a wood base instead). The antenna is held aloft with an additional 4 foot PVC pipe extender which is screwed onto a standard 1/2 inch pipe flange screwed to the plywood. If you don’t need the additional height, or want a stronger assembly, skip the 4 foot extender and just use a shorter male-male pipe section between the TEE and the pipe flange. Or you could just lash it to a table leg or anything else vertical. You get the idea…Simple, cheap, effective. See photo below.

(Also see posting on Covert Antenna Systems for additional “stealthy antenna” ideas.)


Another very handy antenna that produces good performance on the VHF bands (and even the upper HF bands) is the “Jungle Antenna“.

Triple Canopy Jungle

Above: Triple canopy jungle is a really good RF energy absorber, especially on the higher frequencies. Try to get some elevation (duh) but rig your Jungle Antenna as high as you can to get it to be clear of the surrounding foliage. Here, the words of Clausewitz [Mandatory quotation] become obvious:
Everything is very simple in war, but the simplest thing is difficult.” Indeed.
If you are slogging your way through this stuff, “antenna design theory” nicety might have to go out the window. Just try to get some wire UP with the supports, time and energy you have. Or head for that little hillside clearing off in the distance, your extraction LZ, 195 degrees magnetic.  In jungle like this, finding and setting up any antenna in a clearing like that one will help a lot in getting signals in-out.

The Jungle Antenna is easier to build than to describe, but here goes: It is simply a 1/4 wave ground plane antenna made with wire elements versus the traditional metallic rods. The military RC-292 ground plane antenna is electrically equivalent. The Jungle Antenna is intended to be fabricated with locally available materials as a field-expedient when you are operating beyond the end of the logistics stream – you know, where YOU are…. However, it can be pre-fabricated before deployment using more appropriate material. It can be cut to the proper lengths per your Comm Plan freq if you know it.

Field expedient materials could be demolition wire, WD-1/TT, WD-1A/TT field commo wire or any other suitable wire. Insulators can be any non-conductor such as MRE spoons, plastic water bottle strips etc. You’ve read the manual…You can use insulated field commo wire pairs, “zip cord” lamp wire or speaker wire pairs for the feedline as well although coaxial cable will produce more repeatable results. The antenna I have built will easily handle 100 watts of RF power. But this is the “deluxe” model – made beforehand, back in the rear with detachable connectors, coax cable feedline and insulators. Also assisted by soldering some parts together. You can make an electrical (and performance) equivalent with just WD-1/ATT or other commo / demo wire. Improvise, adapt, overcome……

Jungle Antenna with WD-1/TT Commo Wire and BNC Connector

Above: Example of a rolled-up Jungle Antenna cut for 29 MHz. Made from individual conductors from WD-1/TT commo wire. The BNC connector joins everything together and allows RG-58/U coax to connect down to the radio. Works great, lightweight, pre-cut for this frequency band.

I’ve gotten a lot of inquiries about the design of this type antenna, so here goes:  Electrically, the antenna consists of a vertical 1/4 wavelength long radiating element and three (or 4) 1/4 wavelength long “radials” that come down from the center feed point at about a 45 degree angle down from the horizontal. That angle is not particularly critical but it does affect the feedpoint impedance; 45 degrees is about right to produce 50 ohms, your desired target if you are using 50 ohm coaxial cable to feed it (from your 50 ohm output radio). The Jungle Antenna is designed to be suspended from a suitable non-metallic support like a tree and elevated as much as practical to get it high and in the clear of other objects.

(Note that this is primarily a “narrow frequency” antenna. For a given antenna (lengths) , its impedance changes as you change the radio frequency from the antenna-design frequency. So it’s not optimum if you are running a 30-88 MHz frequency hopper like SINGCARS in the Hopping mode. But if it’s all you have, an antenna like this cut for mid band will work. It’s not an OE-254 broadband antenna, but you probably don’t have one of those handy either.)

We’ve all seen drawings of it in the Field Manuals – but how does it actually work?  The following photo’s show a handy Jungle Antenna fabricated with 4 pieces of 20 AWG insulated wire, an insulator at each end of the vertical radiating wire and the 3 radials connected to a common “ground” point at the feed, in this case a standard SO-239 coaxial connector. The antenna is fed with a 20′ piece of RG-58/U, 50 ohm coaxial cable with matching PL-259/adapter connectors at each end.

The 3 radial wires are spaced apart and held at the appx. 45 degree angle with 3 pieces of thin bamboo arranged in a triangle. Bamboo lengths are about 5 feet each at this frequency; size them to get about 45 degrees spread on the radial wires. Use local non-metallic materials. The radial wires are tied to the 3 apex’s of the bamboo triangle which hangs parallel to the ground. The radiating wire top insulator is tied to a nylon cord lanyard thrown over a suitable tree branch for hoisting the assembly up. For maximum range, hoist it as high as your feedline permits. (By the way, the “ground stake” shown in the above illustration is unnecessary for the proper operation of this type antenna.  Although generally a good idea from a “safety” perspective, ground plane and dipole antennas performance is not enhanced by grounding the radio.)

Below is a Jungle Antenna at my backyard “antenna test range”. Hung from a tree so the feedpoint was about 18 feet above ground and about 15 feet away from any metal objects. I used the antenna impedance meter to measure the impedance at the design frequency of 51.0 MC. The antenna measures 51+j0 ohms, close enough to 50 ohms, yielding an SWR of 1:1, the desired outcome within the accuracy of this meter. What does that mean? It means that this antenna will efficiently radiate almost all of the transmit power you send it. Your goal.

The white object is the lower insulator, the silver PL-259/SO-239 connections are visible with the black coaxial cable heading downward. The gray wire is the 52 inch vertical radiator wire, 3 black wire radials are evident. The green nylon cord ties the SO-239 to the insulator, taking the strain off the soldered wire connection (the insulator is not electrically necessary). The 3 black radial wires are soldered together and then soldered to the “ground” flange of the SO-239 to form the ground plane. See below photo’s.

Jungle Antenna Feedboint Assembly

Below is the Jungle Antenna hanging from the tree, viewed from below. The 3 light weight bamboo radial spreaders are evident. The coaxial cable feed line hangs through the middle of the triangle and goes down to the radio. Use local (non-conducting) materials for the spreaders.

Jungle Antenna for 6 Meters N6CC

Below: Photo showing connection of one radial wire to the triangle apex. Duh…Rubber band or local twine to secure, loop radial wire under end. Of course, wrap more securely for long-term ops or windy conditions. The wire insulation and the dry sticks serve as the “insulators” on the ground radials.  For under 50 watts or so, this is adequate. If you want to get fancy, use an insulator of some sort, this is a high-impedance (and therefore high voltage) point.  Especially if you make the antenna from bare, uninsulated wire. Ditto for the top of the vertical wire.  If you are really in a hurry, can’t find any suitable sticks, or need to be super lo-visibility, just let the radial wires hang down by themselves. The antenna then becomes a vertical, (center fed) dipole which works pretty well too. Maybe even a little more broadband than a jungle antenna.

This blurry photo shows the antenna impedance meter while the antenna is under test. It reads the complex impedance as 51+j0 ohms, indicating resonance at 51.010 MC with no reactive component. Close enough. (The fact that the resistive component is 51 ohms at 51 MC is just a fun coincidence – no significance). The resulting SWR is 1:1

Jungle Antenna Impedance Measurement

Stowed, ready to transport. Wire parts weigh practically nothing, will fit in a BDU pocket.

Jungle Antenna coiled up for transport

As an electrical equivalent of the RC-292, the range improvements should be essentially identical. (Actually, it’s even better than the RC-292 since you make the radiator and radials the exact length for your pre-planned frequency. The RC-292 uses fixed-length steel elements which are a compromise in performance – that causes feedline losses). The RC-292 manual states that two PRC-25 radios, each equipped with an RC-292 should expect 12 miles range of over “average” terrain. The planning range of two PRC-25′s operating with the AT-892 “tape” antenna is 5 miles. So the RC-292 can be expected to at least double the range available by comparison.

A jungle antenna at the same 40 foot height should produce similar range results. Get it high, in the clear, away from other objects, especially metallic ones. I can get into 51 MC Ham repeaters in the Sierra Nevada mountains from here using the Jungle Antenna and a 5 watt transmitter – over 80 miles away. (The repeaters are up around 2500 feet AMSL, I am near sea level but there is other terrain blocking the LOS path). Expect long range but your mileage may vary. (My military and Ham experience with these radios tells me that “12 miles over average terrain between RC-292 – equipped PRC-25 radios” is VERY conservative.)

Jungle Antenna for 51 Mc N6CC

Jungle Antenna for 51 Mc N6CC

This antenna WORKS!  If you have the luxury of building your antenna with coaxial cable feedline and BNC connector, it connects directly to the radio (just like an RC-292) as seen below:

The “really field expedient” Jungle Antenna:  You can also make the antenna and feedline from “assault wire” AKA WD-1A/TT, and little else.  It is your more likely parts source since it is widely available in the field, beyond the end of the logistics lines. You know, where YOU are STILL located!  In that case, the 3 radial wires are all made from the wire and the “feedpoint” ends are twisted together and connected to the feedline to the radio. This is the “ground” wire.  The other wire is the vertical “radiator” and it is not connected to the radials; it continues down to the radio on the other conductor of the pair. Easier done than explained. However, make sure you identify which wire in the feedline is the actual vertical radiator. This is done during construction by following this wire down to the radio end and “marking” it with a knot. “The Knot is Hot”. See below

“But Chief, how do I connect the Jungle Antenna to the radio?  This antenna feedline has no connectors!”  Note the knotted “hot” conductor is connected to the radio antenna terminal using the tape antenna flexible mount screwed in to keep it in place. The other “ground” wire which is connected to the antennas radials is connected to the radio chassis – here under the screw that holds the BNC connector dust cap chain.  In this case, use this method for the PRC-10, 25 or 77 radios. When connecting up a Jungle Antenna do not use the hard rubber AB-591A/PRC spring from the long fishpole whip antenna to connect the hot wire to the radio.  That brass stud sticking out the bottom (seen above) operates switches in the radio to reconfigure the matching circuits to the fishpole antenna.  Not what you want.  Use the AT-892 as your “bolt” instead. (of course, remove the steel tape antenna from the spring mount first – you don’t want or need it now)

For more modern gear like the SINGCARS series (and operating in a non-freq hopping mode), you need to push the center “hot” conductor into the front panel BNC female connector and figure out some strain relief so it doesn’t fall out. The “ground” wire which is connected to the radial wires needs to be electrically connected to the radio chassis. Find a “screw of opportunity” on the chassis – make sure something doesn’t fall off when you loosen it for the ground wire! Figure this out in advance. These new radios have a thousand “Bells and Whistles”, but no grounding lug.

In the  above setup I was using WD-1A/TT assault wire.  It is made from 2 wires bonded together like lamp “zip cord” rather than the 2 individual wires of the older WD-1/TT wire.  Either type works fine.

Another long range VHF antenna is the AT-984A/G long wire antenna. Strung about 4 feet above ground over its 150 foot length, the antenna radiates best in the direction(s) the wire is running. TM11-5820-667-12 states that a pair of PRC-25 (77) radios equipped with these antennas can expect ranges of 17 miles between them.  Awhile back we ran some experiments between a PRC-25/AT-984A/G set and another PRC-25 with the AT-271A/PRC 10 foot fishpole antenna at the other end.  Over a nearly-optical line of sight path, we had solid 2 way comms over a 131 mile path.  Pretty optimum path however, elevated terrain is your friend.  See the Category “Radio News” PRC-25 Hearability Tests posting elsewhere on this website for details.

Above: The AT-984A/G. It consists of 150 feet of uninsulated stranded phosphor-bronze wire wound on a modified fly fishing reel for storage and unwinding. It has a spade lug on the radio-end for connection to the radio antenna jack; a nylon line for the “insulator” at the far end. In this case, the manual advises the use of the AB-591A whip antenna spring base as the connection “bolt”. This part configures the radio’s matching circuits for better power transfer with this particular antenna.

While the AT-984A/G is an NSN-stock antenna, you can make a simpler field-expedient one by just using 150 feet (or more) of insulated WD-1A/TT assault wire instead. It is lighter (but harder to store) but is also insulated, a useful feature when everything is wet around the antenna. Not sure why the stock antenna uses bare wire – I certainly would have made it with insulated wire instead.  Keep it off the foliage – these radios only put out about 2 watts, none to waste.

A field expedient version is just 5 or more wavelengths of wire operating at your lowest planned frequency. Longer is better and also more directional (you need to aim it along the right azimuth accurately.) Configured as a long wire or supported in the middle as a vertical half-rhombic, these antennas will stretch your maximum range. Those antennas are bi-rirectional along the azimuth. If you terminate the far end with about 600 ohms to ground, that reduces the signal in the reverse direction. Run a ground wire under it if you can. These type antennas also work well on HF frequencies.

A single-wire antenna such as this will perform better if the radio is “grounded”.  Here’s a quick field expedient to meet that need:

Above: If you do use/need a “ground” connection, here is a simple solution for your bag of field tricks. It is just a 12 inch aluminum mast/tent stake with the paint sanded off. Drill a hole for a 1/4 – 20 machine screw, nut, 2 flat washers and a wing nut – add your ground braid wire and a big alligator clip. Dig a fist-sized hole in the soil, fill it with water and pound the stake in the bottom. Not a great RF ground, NEC-compliant AC power ground or a lightning ground – but it is quick, dirty and vastly better than nothing for an on-the-move system that needs a “ground”. Important: Adjust the wire length between the stake and the radio to keep it as short as possible – lay out the remaining wire on the ground to assist as a “radial”. Or just reverse the wire and clamp it to a local grounded water pipe, steel structure, any metal in good contact with the soil. Connect other end to radio without using the stake. Incidentally, this makes a very functional ground connection for a fox hole or crystal radio in the field. The stake can also hold down your hootch – dual use.

Field Expedient Radio Ground

Above: You get the idea…Hammer that stake all the way in. If you humped in an E-Tool that you then used to dig the hole, you can bury the E-Tool blade and use IT for a ground. Here, the stake used to ground a PRC-25 while rigged to a half-rhombic antenna. Lay the excess ground wire directly under the antenna wire, preferably all the way to the other end of the antenna and its termination resistor. As always, keep the connection between the ground stake and radio chassis as short as possible.

A field expedient “ground” solution for any HF radio such as a TRC-77, PRC-47, PRC-150, GRC-109, SCR-284, RS-6 etc.  It will keep the chassis from biting your fingers with RF too.  If you use a big alligator clip like this, make sure it bites through the paint on the radio chassis.

Another field expedient: We were operating an 80 meter dipole in the boonies but needed to make comms on 60 meters. No problem. cut the dipole legs for the 60 meter freq and reattach the remaining wire via an expedient insulator. You could “jump” this insulator to go back to 80 meters.

Field Expedient antenna insulator

Above: A short piece of 550 parachute shroud line tied in a loop connects the wire segments. One for each leg. A no-brainer.
Temporary HF Mobile Antenna

I needed an “quick and dirty” expedient HF whip antenna for my Ford Explorer for use on an upcoming trip. It needed to work primarily on 40 meters and I wanted to use MS-116, 117 and 118 antenna sections that I had on hand. Since these sections are used for other radios, I did not want to modify or damage them in any way. I had an AB-652/GR antenna base from the GRC-106 system and I wanted to mount it on the existing 1-1/4 inch trailer hitch and receiver. So a little scrap metal and other junk box parts and I had something going. Total cost beyond what I had on hand? Zero.

This shows the mast base with included spring attached to the trailer hitch. There is a 1 microhenry matching coil from the antenna base to ground and a quick-disconnect cable for the Hot lead and ground strap to the vehicle chassis. This is pretty temporary for now so the matching coil is made from PVC with the turns held in place by hot glue.

The above photo shows the Air Dux stock loading coil, approximately 30 microhenries. The coil is captured between two pieces of plexiglass held together with 4 fiberglass rods tapped for capture nuts. The alligator clip was later replaced with a soldered connection once resonance had been found. The two mast sections are held in axial alignment by a 1/4 inch diameter fiberglass “flag whip” sold for kids’ bicycles. Nearly perfect fit. This rod also serves as the required insulator between the two mast sections. I also used this fiberglass rod material for the coil end plate connections.

This shows most of the overall antenna with the loading coil about 1/3 of the way up the whip (the MS-117 and 118 sections are above the coil). The antenna length is 9 feet with the top about 11 feet above ground. It is guyed to the vehicle during travel since it is pretty flexible and I wanted to keep its impedance within limits as it bent back at-speed. The trailer hitch keeps it pretty far from the vehicle body which helps keep the “Q” up and it reduces the capacitive coupling to the vehicle. It also permits the rear window to be opened without hitting the antenna.

It works well on 40 meters and with a simple Tee tuner in the vehicle it tuned up on 30, 20, 15 and 10 meters as well.

Hmmm, If I add two MS-116 sections below the coil I can bend it forward over the roof of the vehicle and tie it off to the front bumper. This would permit the reduction of the loading coil inductance (lower losses) and it would work great for NVIS comms.


N6CC HF Mobile

Above is a shot of the completed HF ricebox comms system in the family Grocery Getter….Includes GPS for NAV and a CB to collect trucker Intel…I have included a “strap on” antenna tuner that is used while operating in fixed positions to run dipoles or long wires or to use the whip outside its designed frequency range. Note the field-expedient hacksaw blade keyer paddle mounted upside down under the transceiver; dot and dash positions reversed by menu software.

Shake down cruise:  Field Day 2011 HF mobile Ops on Mt Diablo.  Worked 18 states from Connecticut to Hawaii, all on CW in about an hour.

UPDATE: We took this rig on a 3500 mile road trip to Montana with the HF whip enduring 65+ MPH winds on the back of the Explorer while underway. After 3000 miles the center fiberglass dowel finally chafed through and broke, resulting in the upper part falling down. A quick change over removed the loading coil and I simply screwed the upper MS-117 into the lower MS-116 and we were in business again. The antenna tuner could handle the resulting impedance (albeit inefficiently) and we were back up on the Net. It worked great as a temporary design – now I have to build a stronger whip-coil mechanical connection.  See below:

HF Mobile Antena at Pismo Beach N6CC

Above: The field expedient HF mobile antenna pretty close to a great ground! Pismo Beach CA.

Inverted “L” Antenna System

One of my workhorse antennas is an Inverted L although it does not have the “system efficiency” of a resonant dipole.  It runs about 25 feet vertically and then about 75 feet horizontally utilizing available trees, “working against” ground.  It is a good NVIS antenna for regional comms from zero out to about 300 miles on 80 meters when the Critical Freq is in the 4 MC range or a bit higher for that time of day.  It also has a vertical component that is usable for longer distances – but I am not into DX that much.

But it is shorter than the original 180 feet I had installed since the far end ran near a neighbors house and picked up all kinds of electrical hash emanating from their computers, monitors, modems etc.  Shortening it solved that problem pretty well without noticeably impacting signal strength.

I have it tuned to the Western Public Service System freq of 3952 KC since that is also close to a favorite working frequency.  At that freq, it is longer than a quarter wavelength but shorter than half wave.  So its impedance is inductive with a moderately high resistive component.  Consulting the Smith Charts, this complex impedance can be transformed to 50 + J0 ohms with an L Network consisting of a series inductor from the transmitter and a shunt capacitor across the antenna terminal to ground.  It works out to about 20 microhenry’s and about 85 picofarads.

So I built it inside a clear plastic cashew jar from Costco to keep the parts dry, using a blob of silicon grease on the jar-top threads. It is configured using a 100 pf variable capacitor and a piece of junk box Air Dux inductor.  It tuned right up to 50 + J0 at 3952 KC, SWR=1:1   It can operate about 54 KC above and below the design freq while maintaining an SWR under 2:1, indicating a pretty high Q.  With the variable capacitor and the moveable inductor tap, I can tune it to any freq in or around the 75/80 meter band without changing the basic configuration.

The resulting assembly is housed inside an inverted flower pot to keep the sun off the plastic and to protect it from mechanical damage.  Also provides a bit of camo – “Pay no attention to that  flower pot with the wire protruding from the hole in the top”.   Works great and provided good refresher training in the use of the very clever Smith Charts.

N6CC Inverted L antenna feed point

Inverted L antenna matching network built inside a plastic container. The air variable capacitor tuning knob is on the back (bottom).  The transmitter is connected to the inductor via a lug on the red plastic cap.  The red end makes it potentially usable in Mil-Spec shipboard applications, red indicating a transmitting antenna! ;0)  Costco thinks of everything!

N6CC Inverted L antenna tuning network

The other end showing the gray plastic tuning capacitor knob and banana plugs for the antenna and transmitter connections.  The ground lug is a stainless steel bolt with wing nut connected to the ground system.  The white ceramic insulator takes the vertical strain from the antenna wire. A bit of black rubber hose provides chafing protection for the wire versus flower pot. The coax is buried.  As with all similar “single ended” wire antennas, make sure you have a good ground system at the feedpoint.  Connect the ground radial wires to the coax shield and “ground rod” at the antenna base.  This boosts the radiation efficiency by reducing ground losses.

N6CC Inverted L antenna feed point

With this “Inverted L” arrangement the antenna is very quiet during the daytime and dawn/dusk periods. When the band “goes long” in the evening hours the vertical component begins to pick up atmospheric noise (and signals) arriving from low angles beyond NVIS range and it gets a little noisier. Overall a good performer for me for my main interest of 0-300 mile regional coverage.  If your supports cooperate for an “NVIS” system,  make the length such that a current loop (max) occurs in the horizontal portion (versus vertical portion) to provide a high radiation angle when placed about 0.2 wavelengths above the ground.



Wire dipole length calculations.

Every tactical HF radio operator knows that the formula for calculating the length of an HF half-wave wire dipole is L = 468 / f   Where L is the overall length in feet, f is the frequency in Megacycles and 468 is an empirical constant, k.  Usually.  That’s probably close for a wire dipole in “free space”, probably one-half wavelength above “ground”, wherever THAT is….

So I built one for the new 60 meter band.  5.357 Mc to be exact.  So overall length should be 468 / 5.357 = 87.36 feet as a starting point. The feedline is RG-58 at a random length of about 40 feet.

(Yes Your Honor, that coax line performs as an impedance transformer since it is not an integral number of half-waves in length.  I refer you to Mr. Smith <chart>).  But let’s continue, assuming that the resulting dipole looks like 50 +j0 ohms at its terminals when I’m done.  Big assumption.  But in that special case, the electrical length of the 50 ohm feedline does not matter.

Upon building and installing it at a height around 18 feet average (going for an NVIS system here) it resonated at 5.535 Mc, looking into the same feedline.  Too high; the antenna is obviously a bit too short, resonating at the higher frequency.  The “error” is not surprising, considering its height and proximity to a building and other wire antennas.  But how much longer should it be for 5357?  You can use this info to find the correct numerator constant for THIS installation.

Solving for the new constant k, k = 87.36 x 5.535 Mc.  This equals 483.53.  That’s the new constant to use now.

So, NEW length = 483.53 / 5.357 = 90.26 feet overall; each leg = 45.13 feet.  So 87.36 + x = 90.26.  x = 2.90 feet to add to the overall antenna length.  That’s 2.9 /2 = 1.45 feet to each leg.

So I did that, lengthening the antenna accordingly and restringing it in the same place at the same height.  Presto!  New resonant frequency is 5.359 Mc, close enough for a ship this size….The feedline input impedance is now 48 + j0 Ohms at 5.359 Mc; essentially a VSWR of 1:1; no lossy “antenna tuner” required – and it works great.  System “Q”?  It is within 2:1 VSWR between 5.240 and 5.608 Mc so it is more that adequate across the entire 60 meter band.

No rocket science here, just an acknowledgement that a rule-of-thumb can be sharpened with actual measurements and then re-applied.  I’m sure I’m not the first one who has tweaked the formula but it’s pretty apparent how it works..

So, What’s the BEST antenna? The one that WORKS!


Note from author:  “No Rocket Science here but basic practical stuff that I hope someone can use.  Always looking for feedback, corrections, additions etc!”